Freddy T. Nguyen, MD, PhD

Research Fellow @ Massachusetts Institute of Technology, Transfusion Medicine Fellow @ Dartmouth-Hitchcock Medical Center

Needle-probe system for the measurement of tissue refractive index

Needle-based devices, which are in wide clinical use for needle biopsy procedures, may be augmented by suitable optical techniques for the localization and diagnosis of diseased tissue. Tissue refractive index is one optical contrast mechanism with diagnostic potential. In the case of mammary tissue, for example, recent research indicates that refractive index variations between tissue types may be useful for the identification of cancerous tissue. While many coherence-based forward-sensing devices have been developed to detect scattering changes, none have demonstrated refractive index measurement capabilities. We present a novel needle-based device that is capable of simultaneously measuring refractive index and scattering. Coupled to the sample arm of an optical coherence tomography system, the needle device detects the scattering response and optical pathlength through tissue residing in a fixed-width channel. Near-infrared measurements of tissues and materials with known optical properties using a prototype device will be presented. This work demonstrates the feasibility of integrated in vivo measurement of refractive index and scattering in conjunction with existing clinical needle-based devices.

Publication

Optical biopsy of lymph node morphology using optical coherence tomography

Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.

Publication

Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia

Reflectance and fluorescence spectroscopies have shown great promise for early detection of epithelial dysplasia. We have developed a clinical reflectance spectrofluorimeter for multimodal spectroscopic diagnosis of epithelial dysplasia. This clinical instrument, the FastEEM, collects white light reflectance and fluorescence excitation-emission matrices (EEM’s) within a fraction of a second. In this paper we describe the FastEEM instrumentation, designed for collection of multi-modal spectroscopic data. We illustrate its performance using tissue phantoms with well defined optical properties and biochemicals of known fluorescence properties. In addition, we discuss our plans to develop a system that combines a multi-spectral imaging device for wide area surveillance with this contact probe device.

Physician-scientist with extensive experience developing and translating nanotechnologies and biomedical optical technologies from the bench to clinic in areas of genetics, oncology, and cardiovascular diseases. Extensive experience in community building in healthcare innovation, research, medical, and physician-scientist communities through various leadership roles.

Research Profiles

Contact