Research Fellow @ Massachusetts Institute of Technology, Resident Physician @ Mount Sinai Hospital

Transcutaneous Measurement of Essential Vitamins Using Near-Infrared Fluorescent Single-Walled Carbon Nanotube Sensors

Transcutaneous Measurement of Essential Vitamins Using Near-Infrared Fluorescent Single-Walled Carbon Nanotube Sensors
Naveed Ali Bakh, Xun Gong, Michael A. Lee, Xiaojia Jin, Volodymyr B. Koman, Minkyung Park, Freddy T. Nguyen, Michael S. Strano. Small 2021-06-27

Full Text
Vitamins such as riboflavin and ascorbic acid are frequently utilized in a range of biomedical applications as drug delivery targets, fluidic tracers, and pharmaceutical excipients. Sensing these biochemicals in the human body has the potential to significantly advance medical research and clinical applications. In this work, a nanosensor platform consisting of single-walled carbon nanotubes (SWCNTs) with nanoparticle corona phases engineered to allow for the selective molecular recognition of ascorbic acid and riboflavin, is developed. The study provides a methodological framework for the implementation of colloidal SWCNT nanosensors in an intraperitoneal SKH1-E murine model by addressing complications arising from tissue absorption and scattering, mechanical perturbations, as well as sensor diffusion and interactions with the biological environment. Nanosensors are encapsulated in a polyethylene glycol diacrylate hydrogel and a diffusion model is utilized to validate analyte transport and sensor responses to local concentrations at the boundary. Results are found to be reproducible and stable after exposure to 10% mouse serum even after three days of in vivo implantation. A geometrical encoding scheme is used to reference sensor pairs, correcting for in vivo optical and mechanical artifacts, resulting in an order of magnitude improvement of p-value from 0.084 to 0.003 during analyte sensing.

Related Posts

Research Profiles


Physician-scientist with extensive experience developing and translating nanotechnologies and biomedical optical technologies from the bench to clinic in areas of genetics, oncology, and cardiovascular diseases. Extensive experience in community building in healthcare innovation, research, medical, and physician-scientist communities through various leadership roles.


Arnold O. Beckman Postdoctoral Fellow
Institute for Medical Engineering and Science

Research Fellow, MIT Innovation Initiative
Former Co-Director, MIT Hacking Medicine
Regional Director – Europe, MIT Hacking Medicine
Co-Director, MIT COVID-19 Challenge
Co-Director, MIT Hacking Racism Challenge

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139


Resident Physician, PGY-3,
Department of Pathology, Molecular and Cell-Based Medicine

Icahn School of Medicine at Mount Sinai
Mount Sinai Hospital
One Gustave L. Levy Place, Box 1194
New York, NY 10029