Research Fellow @ Massachusetts Institute of Technology, Resident Physician @ Mount Sinai Hospital

Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents

Renu John, Freddy T. Nguyen, Kenneth J. Kolbeck, Eric J. Chaney, Marina Marjanovic, Kenneth S. Suslick, Stephen A. Boppart. Molecular Imaging Biology 2011-02-05

Full Text
PURPOSE: In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres are described for targeted contrast and therapeutic applications.PROCEDURES: A preclinical rat model was used to demonstrate the feasibility of the multimodal multifunctional microspheres as contrast agents in ultrasound, MM-OCT and MRI. Microspheres were functionalized with the RGD peptide ligand, which is targeted to α(v)β₃ integrin receptors that are over-expressed in tumors and atherosclerotic lesions.RESULTS: These microspheres, which contain iron oxide nanoparticles in their cores, can be modulated externally using a magnetic field to create dynamic contrast in MM-OCT. With the presence of iron oxide nanoparticles, these agents also show significant negative T2 contrast in MRI. Using ultrasound B-mode imaging at a frequency of 30 MHz, a marked enhancement of scatter intensity from in vivo rat mammary tumor tissue was observed for these targeted protein microspheres.CONCLUSIONS: Preliminary results demonstrate multimodal contrast-enhanced imaging of these functionalized microsphere agents with MRI, MM-OCT, ultrasound imaging, and fluorescence microscopy, including in vivo tracking of the dynamics of these microspheres in real-time using a high-frequency ultrasound imaging system. These targeted oil-filled protein microspheres with the capacity for high drug-delivery loads offer the potential for local delivery of lipophilic drugs under image guidance.
Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on pinterest
Pinterest
Share on email
Email

Related Posts

Research Profiles

Contact

Physician-scientist with extensive experience developing and translating nanotechnologies and biomedical optical technologies from the bench to clinic in areas of genetics, oncology, and cardiovascular diseases. Extensive experience in community building in healthcare innovation, research, medical, and physician-scientist communities through various leadership roles.

Email: freddytn@mit.edu

Arnold O. Beckman Postdoctoral Fellow
Institute for Medical Engineering and Science

Research Fellow, MIT Innovation Initiative
Former Co-Director, MIT Hacking Medicine
Regional Director – Europe, MIT Hacking Medicine
Co-Director, MIT COVID-19 Challenge
Co-Director, MIT Hacking Racism Challenge

Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139

Email: freddy.nguyen@mountsinai.org

Resident Physician, PGY-3,
Department of Pathology, Molecular and Cell-Based Medicine

Icahn School of Medicine at Mount Sinai
Mount Sinai Hospital
One Gustave L. Levy Place, Box 1194
New York, NY 10029