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Optical properties of tissues quantified
by Fourier-transform light scattering
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We employ Fourier-transform light scattering, a technique recently developed in our laboratory, to study the
scattering properties of rat organ tissues. Using the knowledge of the complex field associated with high-
resolution microscope images of tissue slices, we extracted the scattering mean-free path ls and anisotropy
factor g, which characterize the bulk tissue for three different rat organs. This “bottom up” approach to mea-
suring tissue scattering parameters allows for predicting the wave transport phenomena within the organ of
interest at a multitude of scales—from organelle to organ level. © 2009 Optical Society of America

OCIS codes: 290.5820, 170.3660, 170.6935, 170.0180, 180.3170.
Upon propagation through inhomogeneous media,
optical fields undergo modifications in terms of irra-
diance, phase, spectrum, direction, polarization, and
coherence, which can reveal information about the
sample of interest. Light scattering by cells and tis-
sues evolved as a dynamic area of study, especially
because this type of investigation can potentially of-
fer a noninvasive window into function and pathology
[1–9]. Despite all these efforts, light-scattering-based
techniques currently have limited use in the clinic. A
great challenge is posed by the insufficient knowl-
edge of the tissues’s optical properties.

Recent phase-sensitive methods have been em-
ployed to directly extract the refractive index of cells
and tissues [10]. These approaches have been ex-
tended further to three-dimensional (3D) reconstruc-
tions of cell refractive index [11,12]. Starting from
the measured 3D refractive index distribution, the
angular scattering has been retrieved via the Born
approximation [13]. Based on diffraction phase mi-
croscopy (DPM) [14], we developed Fourier-transform
light scattering (FTLS) as an experimental approach
for studying inhomogeneous and dynamic media [15].
In FTLS the optical phase and amplitude of a coher-
ent image field are quantified and propagated nu-
merically to the scattering plane.

In this Letter, we use FTLS to extract quantita-
tively the scattering mean-free path ls and anisotropy
factor g from tissue slices of different organs. This di-
rect measurement of tissue scattering parameters al-
lows for predicting the wave transport phenomena
within the organ of interest at a multitude of scales.
Figure 1 depicts our experimental setup, presented
in more detail previously [14]. Briefly, the fiber-
coupled second harmonic of a diode-pumped Nd:YAG
laser ��=532 nm� is collimated and used to illumi-
nate the sample in transmission. At the sample
plane, the laser beam is larger than a centimeter,
with a total power of approximately 3 mW. An ampli-
tude diffraction grating G (110 grooves/mm) is placed

at the image plane. To establish a common-path
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Mach–Zehnder interferometer, a standard spatial fil-
tering lens set L1–L2 (i.e., 4-f system) with focal
lengths of 60 and 300 mm is used to select the two
diffraction orders and generate the final interfero-
gram at the CCD plane. The zeroth-order beam is
low-pass filtered using a pinhole (25 �m diameter) at
the spatial filter (SF) plane, which is the Fourier
plane of L1. Thus, at the CCD plane this zeroth-order
beam approaches a uniform, i.e., reference, field. Si-
multaneously, the SF allows for passing the entire
frequency content of the first diffraction-order beam
and blocks all the other orders. The two beams propa-
gate along a common optical path, significantly re-
ducing the longitudinal phase noise. From a single
CCD exposure, we obtain the spatially resolved
phase and amplitude associated with the image field,
U�r�= �U�r��ei��r� [14].

Figures 2(a)–2(c) show examples of quantitative
phase images associated with 5 �m tissue slices for
three different organs from a rat, which were pre-
pared according to a standard procedure under a pro-
tocol approved by the Institutional Animal Care and
Use Committee at the University of Illinois at
Urbana-Champaign. The scattered intensity for each
slice is obtained by Fourier transforming the complex
image field,

Fig. 1. Schematic of the FTLS setup. FC, fiber collimator;
BS, beam splitter; S, sample; O, objective lens; M, mirror;
TL, tube lens; I, iris; G, grating; SF, spatial filter; L1 and

L2, lenses.
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Ĩ�q� � �� � ��U�r��ei��r��eiq·rd2r�2

. �1�

In Eq. (1), q is the momentum transfer of modulus
q= �4� /��sin�� /2�, with � as the scattering angle. The
scattering maps associated with the phase images
[Figs. 2(a)–2(c)] are shown in Figs. 2(d)–2(f).

The scattering mean-free path ls was measured by
quantifying the attenuation owing to scattering for

Fig. 3. FTLS measurements of the (a) scattering mean-
free path ls, (b) anisotropy factors, and (c) transport mean-
free path for the three rat organs with 20 samples per
group. The error bars correspond to the standard devia-
tions �N=20�. (d)–(f) The angular-scattering plots associ-
ated with the scattering maps in Figs. 2(d)–2(f). The
dashed curves indicate fits with the GK phase function.

Fig. 2. (a)–(c) Examples of quantitative phase images
�512�512 pixels� for rat kidney, liver, and brain, respec-
tively. Scale bar shows 25 �m; (d)–(f) The scattering maps
(logarithmic scale) associated with the phase images (a)–
(c). Scale bar shows 0.14 rad.
each slice via the Lambert–Beer law, ls
=−d / ln �I�d� /I0�, where d is the thickness of the tis-
sue, I�d� is the irradiance of the unscattered light af-
ter transmission through the tissue, and I0 is the to-
tal irradiance, i.e., the sum of the scattered and
unscattered components. The unscattered intensity
I�d� is evaluated by integrating the angular scatter-
ing over the diffraction spot around the origin. The
resulting ls values for 20 samples for each organ from
the same rat are summarized in Fig. 3(a). Ritz et al.
[19] report much-larger values for ls of pig liver. How-
ever, their wavelength is in the near-IR, which is ex-
pected to scatter less strongly than our green light.
Parsa et al. [20], on the other hand, report ls
=60 �m at our wavelength by using the integrating
sphere and diffusion model. This ls value is a factor of
�4 larger than our values [Fig. 3(a)]. We believe that
differences in sample preparation may explain this
discrepancy.

The anisotropy factor g is defined as the average
cosine of the scattering angle,

g = �
−1

1

cos���p�cos����d�cos����

�
−1

1

p�cos����d�cos����

, �2�

where p is the normalized angular scattering, i.e., the
phase function. Note that since Eq. (1) applies to tis-
sue slices of thickness d� ls, it cannot be used di-
rectly in Eq. (2) to extract g since g values in this case
will be thickness dependent. This is so because the
calculation in Eq. (2) is defined over tissue of thick-
ness d= ls, which describes the average scattering
properties of the tissue (i.e., independent of how the
tissue is cut). Under the weakly scattering regime of
interest here, this angular-scattering distribution p
is obtained by propagating the complex field numeri-
cally through N= ls /d layers of d=5 �m thickness,

p�q� � �� � �U�r��Neiq·rd2r�2

. �3�

Equation (3) applies to a slice of thickness ls. It re-
flects that by propagating through N weakly scatter-
ing layers of tissue, the total phase accumulation is
the sum of the phase shifts from each layer, as is typi-
cally assumed in phase imaging of transparent struc-
tures [10]. In essence, Eq. (1) describes the tissue
slice angular scattering, while Eq. (3) characterizes
the bulk tissue. The angular-scattering distribution,
or phase function, p��� is obtained by performing azi-
muthal averaging of the scattering map, p�q�, associ-
ated with each tissue sample [Figs. 2(a)–2(c)]. The
maximum scattering angle was determined by the
NA of the objective lens and is about 18° for our cur-
rent setup. The angular-scattering data were further
fitted with Gegenbauer kernel (GK) phase function

[16],
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P��� = ag
�1 − g2�2a

��1 + g2 − 2g cos�����a+1���1 + g�2a − �1 − g�2a�
.

�4�

Note that g can be estimated directly from the
angular-scattering data via its definition [Eq. (2)].
However, because of the limited angular range mea-
sured, g tends to be overestimated by this method,
and thus the GK fit offers a more reliable alternative
than the widely used Henyey–Greenstein (HG) phase
function (with the parameter a=1/2). The represen-
tative fitting plots for each sample are shown in Figs.
3(d)–3(f). The final values of g are included in Fig.
3(b) and agree very well with previous reports in the
literature [17].

From these measurements of thin singly scattering
slices we inferred the behavior of light transport in
thick strongly scattering tissue. Thus the transport
mean-free path, which is the renormalized scattering
length to account for the anisotropic phase function,
can be obtained as l�= ls / �1−g�. The l� values for 20
samples from each organ are shown in Fig. 3(c),
which show larger standard deviations compared to
ls and g. These larger fluctuations are due to the com-
bined effect of measuring both g and ls.

In summary, we showed that FTLS can quantify
the angular-scattering properties of thin tissues,
which in turn provides the scattering mean-free path
ls and anisotropy factor g, for the macroscopic (bulk)
organ. We note that based on the knowledge of ls, g,
and l�, one can predict the outcome of a broad range
of scattering experiments on large samples �size
	 l�� via numerical solutions to the transport equa-
tion or analytical solutions to the diffusion equation.
We envision that the FTLS measurements of un-
stained tissue biopsies, which are broadly available,
will provide not only diagnosis value but also possibly
the premise for a large scattering database, where
various tissue types, healthy and diseased, will be
fully characterized in terms of their scattering prop-
erties. At the opposite end of the spatial scales, FTLS
can be used in combination with high-resolution mi-
croscopes to describe the angular (and dynamic) scat-
tering of subcellular structures. For example, we
have recently demonstrated that FTLS is sensitive to
spatiotemporal organization of actin cytoskeleton
[18]. Thus, FTLS can be used to study tissue optics
from microscopic (organelle) to macroscopic (organ)
spatial scales.

This research was supported in part by the Na-
tional Science Foundation (NSF) (CAREER 08-
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