Research Fellow @ Massachusetts Institute of Technology, Resident Physician @ Mount Sinai Hospital

High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap

We report a method to achieve high speed and high resolution live cell Raman images using small spherical gold nanoparticles with highly narrow intra-nanogap structures responding to NIR excitation (785 nm) and high-speed confocal Raman microscopy. The three different Raman-active molecules placed in the narrow intra-nanogap showed a strong and uniform Raman intensity in solution even under transient exposure time (10 ms) and low input power of incident laser (200 μW), which lead to obtain high-resolution single cell image within 30 s without inducing significant cell damage. The high resolution Raman image showed the distributions of gold nanoparticles for their targeted sites such as cytoplasm, mitochondria, or nucleus. The high speed Raman-based live cell imaging allowed us to monitor rapidly changing cell morphologies during cell death induced by the addition of highly toxic KCN solution to cells. These results strongly suggest that the use of SERS-active nanoparticle can greatly improve the current temporal resolution and image quality of Raman-based cell images enough to obtain the detailed cell dynamics and/or the responses of cells to potential drug molecules.

Publication

Measuring uptake dynamics of multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells

Carbon nanotube uptake was measured via high-speed confocal Raman imaging in live cells. Spatial and temporal tracking of two cell-intrinsic and nine nanotube-derived Raman bands was conducted simultaneously in RAW 264.7 macrophages. Movies resolved single (n, m) species, defects, and aggregation states of nanotubes transiently as well as the cell position, denoted by lipid and protein signals. This work portends the real-time molecular imaging of live cells and tissues using Raman spectroscopy, affording multiplexing and complete photostability.

Targeted multi-modal protein microspheres for cancer imaging

Optical coherence tomography (OCT) is a novel technology that has been developed for various clinical applications from ophthalmology to oncology. OCT is analogous to ultrasound but with micron-scale resolution by using light waves instead of sound waves to provide detailed structural information at the cellular level. The development of contrast agents has been critical to the development of OCT and its functional modalities such as magneto-motive OCT (MM-OCT). MM-OCT is a modality of OCT in which a small external magnetic field is modulated on and off during imaging, providing an added dimension of contrast from the magnetic particle responses. Protein microspheres consisting of a hydrophobic oil core and a hydrophilic BSA protein shell provide the vehicle for a multi-modal contrast agent. The microspheres encapsulate iron oxide nanoparticles in the oil core, providing magnetic signal contrast, and dyes such as Nile Red and DiR iodide, providing fluorescence contrast. The outer surface is functionalized using a layer-by-layer adhesion process to attach RGD peptide sequences to target integrin receptors. Using dynamic light scattering, we found the size distribution of the microspheres to be between 1-5 µm. Under SEM and TEM, we were able to visualize the various layers and coatings, such as silica and RGD peptides, of the microsphere. The microspheres were optimized to maximize the magnetic contrast under MM-OCT and MRI, and the fluorescent contrast under a dark box fluorescence imaging system, and fluorescence microscopy. These studies validated the use of MM-OCT as a method for quantifying the relative amount of iron oxide and the relative number of microspheres in the samples. To address the binding specificity and sensitivity of the RGD coated microspheres to the integrin receptors, the microspheres were incubated with cell lines of varying expression levels of the alpha(v)beta(3) integrin receptor and visualized under fluorescence microscopy. The cell lines used in this study included a normal epithelial cell line: hTERT-HME1, and several human breast cancer cell lines: HCC38, SK-BR-3, MCF-7, ZR-75-1, MDA-MB-231, and MDA-MB-435S. These results were externally validated by quantification of the receptors using indirect immunohistochemical staining and flow cytometry. Preliminary results, using the multi-spectral dark box fluorescence imaging system, demonstrate the localization of the microspheres to the vasculature surrounding the tumor and to lymph nodes. This is highly suggestive of the microsphere’s selective binding to the vasculature. By combining the benefits of these various imaging modalities in a single agent, it becomes possible to use a wide-field imaging method such as MRI or small animal fluorescence imaging to initially locate the agents in-vivo, to use MM-OCT to provide micron scale resolution structural images in-vivo, and to use fluorescence microcopy to confirm the localization of these particles ex-vivo.

Magnetomotive optical coherence microscopy for cell dynamics and biomechanics

Magnetomotive microscopy techniques are introduced to investigate cell dynamics and biomechanics. These techniques are based on magnetomotive transducers present in cells and optical coherence imaging techniques. In this study, magnetomotive transducers include magnetic nanoparticles (MNPs) and fluorescently labeled magnetic microspheres, while the optical coherence imaging techniques include integrated optical coherence (OCM)and multiphoton (MPM) microscopy,and diffraction phase microscopy (DPM). Samples used in this study are murine macrophage cells in culture that were incubated with magnetomotive transducers. MPMis used to visualize multifunctional microspheres based on their fluorescence, while magnetomotive OCM detects sinusoidal displacements of the sample induced by a magnetic field. DPM is used to image single cells at a lower frequency magnetic excitation, and with its Fourier transform light scattering (FTLS) analysis, oscillation amplitude is obtained, indicating the relative biomechanical properties of macrophage cells. These magnetomotive microscopy method shave potential to be used to image and measure cell dynamics and biomechanical properties. The ability to measure and understand biomechanical properties of cells and their microenvironments, especially for tumor cells, is of great importance and may provide insight for diagnostic and subsequently therapeutic interventions.

Publication

Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents

PURPOSE: In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres are described for targeted contrast and therapeutic applications.PROCEDURES: A preclinical rat model was used to demonstrate the feasibility of the multimodal multifunctional microspheres as contrast agents in ultrasound, MM-OCT and MRI. Microspheres were functionalized with the RGD peptide ligand, which is targeted to α(v)β₃ integrin receptors that are over-expressed in tumors and atherosclerotic lesions.RESULTS: These microspheres, which contain iron oxide nanoparticles in their cores, can be modulated externally using a magnetic field to create dynamic contrast in MM-OCT. With the presence of iron oxide nanoparticles, these agents also show significant negative T2 contrast in MRI. Using ultrasound B-mode imaging at a frequency of 30 MHz, a marked enhancement of scatter intensity from in vivo rat mammary tumor tissue was observed for these targeted protein microspheres.CONCLUSIONS: Preliminary results demonstrate multimodal contrast-enhanced imaging of these functionalized microsphere agents with MRI, MM-OCT, ultrasound imaging, and fluorescence microscopy, including in vivo tracking of the dynamics of these microspheres in real-time using a high-frequency ultrasound imaging system. These targeted oil-filled protein microspheres with the capacity for high drug-delivery loads offer the potential for local delivery of lipophilic drugs under image guidance.

Publication

Fourier Transform Light Scattering (FTLS) of Cells and Tissues

Fourier transform light scattering (FTLS) has been recently developed as a novel, ultrasensitive method for studying light scattering from inhomogeneous and dynamic structures. FTLS relies on quantifying the optical phase and amplitude associated with a coherent image field and propagating it numerically to the scattering plane. In this paper, we review the principle and applications of FTLS to static and dynamic light scattering from biological tissues and live cells. Compared with other existing light scattering techniques, FTLS has significant benefits of high sensitivity, speed, and angular resolution. We anticipate that FTLS will set the basis for disease diagnosis based on intrinsic tissue optical properties and provide an efficient tool for quantifying cell structures and dynamics.

Publication

Congressionally Directed Medical Research Programs – Breast Cancer Research Program

Freddy Nguyen, an M.D./Ph.D. student in Professor Stephen Boppart’s Biophotonics Imaging Laboratory, was awarded an FY07 BCRP
Predoctoral Traineeship Award to optimize the use of an innovative imaging technology, magnetomotive optical coherence tomography (MM-OCT), which can provide real-time microscopic analysis of tumor
cells. Specifically, Mr. Nguyen’s project is to develop and optimize protein microspheres as a multimodal contrast agent to be used in conjunction with MM-OCT.
Mr. Nguyen has focused on encapsulating iron oxide nanoparticles and fluorescent dyes into the inner cores of modified protein microspheres capable of specifically targeting tumor neovessels, which are the blood vessels that tumors form to support their rapid growth. Tumor neovessel specificity was achieved by coating the microspheres with an arginine-glycine-asparatate (RGD) peptide, which binds to the αvβ3 integrin receptor on the surface of tumor neovessel endothelial cells. Preliminary studies confirmed that the microspheres preferentially bind to the tumor cells because they overexpress αvβ3 integrins in vitro. The microspheres accumulated in the neoves- sels at the tumor sites when injected into tumor-bearing rats. Mr. Nguyen plans to further pur- sue the cancer-specific targeting of the protein microspheres as a potential diagnostic contrast agent as well as a therapeutic agent in the treatment of breast cancer.

RGD coated protein microspheres as a dual fluorescent and magnetomotive contrast agent for targeted cancer imaging with magnetomotive optical coherence tomography

Optical coherence tomography (OCT) is a novel technology that has been developed for various clinical applications ranging from ophthalmology to oncology. OCT is analogous to ultrasound technology but with micron by using light waves instead of sound waves providing detailed morphological or structural information at the cellular level about the tissue specimen. Magneto-motive OCT (MM-OCT) is a recently developed modality of OCT in which a magnetic field is modulated on and off during imaging. With the development of this modality, exogeneous contrast agents are becoming more important to target markers that are expressed prior to morphological changes that structural OCT can only detect. Modified protein microspheres consisting of an oil core and a hydrophilic BSA protein shell are being presented as a multi-modal contrast agent vehicle. The protein microspheres are encapsulated with iron oxide in the oil core to provide the magnetic signal contrast and a near infrared dye to provide a fluorescence contrast. The outer surface is functionalized using a layer-by-layer adhesion process to attach RGD peptide sequences to target integrin receptors. Under MM-OCT, these agents have been detected above various levels of background tissue scattering demonstrating that these agents can provide added contrast to OCT through the magnetic signal. These agents were incubated with various cell lines with differing levels of alpha(v)beta(3) integrin receptor expression that were quantified using western blotting and fluorescent antibody immunohistochemical staining. The normal control cell line used was the CRL-4010. The breast cancer cell lines studied included CRL-2314, SK-BR-3, MCF-7, and 13762 MAT B III cells. These studies address the binding specificity and sensitivity of the RGD functionalized protein microspheres to the alpha(v)beta(3) integrin receptors. In addition, a quantitative analysis is being performed to correlate the relative levels of bound microspheres to the cells, measured through MM-OCT measurements and through their fluorescence signals of the microspheres, and the cell’s alpha(v)beta(3) integrin receptor expression derived from the western blot experiments. Preliminary results indicate that these agents have a higher affinity to the cancer cells over the normal epithelial cells and are also internalized by the cells and could have to potential to become localized targeted drug delivery vehicles. In an NMU carcinogen induced rat animal model, the targeted protein microspheres were injected in-vivo. These preliminary results, using a multi-spectral dark box imaging system, demonstrate the localization of the microspheres to the vasculature surrounding the tumor. These microspheres are being presented as a novel contrast agent to a novel high resolution imaging modality targeted at cancer.

Publication

Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer

During breast-conserving surgeries, axillary lymph nodes draining from the primary tumor site are removed for disease staging. Although a high number of lymph nodes are often resected during sentinel and lymph-node dissections, only a relatively small percentage of nodes are found to be metastatic, a fact that must be weighed against potential complications such as lymphedema. Without a real-time in vivo or in situ intraoperative imaging tool to provide a microscopic assessment of the nodes, postoperative paraffin section histopathological analysis currently remains the gold standard in assessing the status of lymph nodes. This paper investigates the use of optical coherence tomography (OCT), a high-resolution real-time microscopic optical-imaging technique, for the intraoperative ex vivo imaging and assessment of axillary lymph nodes. Normal (13), reactive (1), and metastatic (3) lymph nodes from 17 human patients with breast cancer were imaged intraoperatively with OCT. These preliminary clinical studies have identified scattering changes in the cortex, relative to the capsule, which can be used to differentiate normal from reactive and metastatic nodes. These optical scattering changes are correlated with inflammatory and immunological changes observed in the follicles and germinal centers. These results suggest that intraoperative OCT has the potential to assess the real-time node status in situ, without having to physically resect and histologically process specimens to visualize microscopic features.

Physician-scientist with extensive experience developing and translating nanotechnologies and biomedical optical technologies from the bench to clinic in areas of genetics, oncology, and cardiovascular diseases. Extensive experience in community building in healthcare innovation, research, medical, and physician-scientist communities through various leadership roles.

Research Profiles

Contact