Research Fellow @ Massachusetts Institute of Technology, Resident Physician @ Mount Sinai Hospital

Publication

Characterization of magnetic nanoparticle-seeded microspheres for magnetomotive and multimodal imaging

Magnetic iron-oxide nanoparticles have been developed as contrast agents in magnetic resonance imaging (MRI) and as therapeutic agents in magnetic hyperthermia. They have also recently been demonstrated as contrast and elastography agents in magnetomotive optical coherence tomography and elastography (MM-OCT and MM-OCE, respectively). Protein-shell microspheres containing suspensions of these magnetic nanoparticles in lipid cores, and with functionalized outer shells for specific targeting, have also been demonstrated as efficient contrast agents for imaging modalities such as MM-OCT and MRI, and can be easily modified for other modalities such as ultrasound, fluorescence, and luminescence imaging. In addition to multimodal contrast-enhanced imaging, these microspheres could serve as drug carriers for targeted delivery under image guidance. Although the preparation and surface modifications of protein microspheres containing iron oxide nanoparticles has been previously described and feasibility studies conducted, many questions regarding their production and properties remain. Since the use of multifunctional microspheres could have high clinical relevance, here we report a detailed characterization of their properties and behavior in different environments to highlight their versatility. The work presented here is an effort for the development and optimization of nanoparticle-based microspheres as multi-modal contrast agents that can bridge imaging modalities on different size scales.

News

2017 Class of Arnold O. Beckman Postdoctoral Fellows

The Arnold and Mabel Beckman Foundation announced today its 2017 class of Arnold O. Beckman Postdoctoral Fellows, individuals who underscore the Foundation’s mission of supporting basic research in the chemistry and life sciences. They were selected after a three-part review led by a panel of scientific experts.

The Foundation will award more than $2.6 million in funding for 20 exceptional research fellows from 13 universities

Video

MIT News: Developing rapid cancer nano sensors

Chemicals like nitric oxide and hydrogen peroxide can promote cancer growth. MPC-CMSE Summer Scholar Kaila Holloway is working in the lab of Michael S. Strano, Carbon P. Dubbs Professor in Chemical Engineering at MIT, to develop tiny chemical sensors to detect their concentrations near tumors in the body.

MIT News: Four from MIT named 2017 Arnold O. Beckman Postdoctoral Fellows
News

MIT News: Four from MIT named 2017 Arnold O. Beckman Postdoctoral Fellows

MIT News – Melanie Miller Kaufman – Department of Chemical Engineering – April 24, 2017

Chemical engineering and chemistry postdocs “expected to become the next generation of leaders and innovators in science, engineering, and technology.”

Danielle Mai and Freddy Nguyen from the MIT Department of Chemical Engineering, along with Liela Bayeh and Julianne Troiano of the Department of Chemistry, were awarded 2017 Arnold O. Beckman Postdoctoral Fellowships. The two-year, competitive program will support each researcher’s continuing work in their corresponding labs.

Freddy Nguyen, a member of the Michael Strano lab, is working to develop nanoscale molecular sensors for probing cancer tumors and their microenvironments. He would like to implant nanosensors inside tumors to measure their response, at the molecular level, to various cancer therapies such as chemotherapeutics and radiation therapy. In 2016, he earned his medical degree from the University of Illinois at Chicago, and in 2015 received a PhD in physical chemistry from the University of Illinois at Urbana-Champaign.

2017 Arnold O. Beckman Postdoctoral Fellow
News

2017 Arnold O. Beckman Postdoctoral Fellow

Arnold and Mabel Beckman Foundation – March 30, 2017

2017 Beckman Postdoctoral Fellow
Massachusetts Institute of Technology
Research: Development of nanosensors for in-vivo monitoring of cancer therapeutics

News

Freddy Nguyen Chosen for an Arnold O. Beckman Postdoctoral Fellows Award

2015 PhD graduate awarded Beckman Postdoc Fellowship – March 30, 2017

Congratulations to Freddy Nguyen, a 2015 Illinois Chemistry PhD graduate, who was chosen for a prestigious Arnold O. Beckman Postdoctoral Fellows Award. Nguyen is a postdoctoral researcher at MIT working on development of nanosensors for in vivomonitoring of cancer therapeutics.

According to Nguyen, “The research I am planning to pursue is focused on the development of nanoscale molecular sensors for probing the tumor and its microenvironment. More specifically, we would like to implant our nanosensors inside tumors to to measure their response at the molecular level to various cancer therapies such as chemotherapeutics and radiation therapy. Our nanosensors are detected using near-infrared fluorescence and Raman spectroscopic techniques allowing us to probe the sensors from a distance using near-infrared light and are not susceptible to photobleaching effects unlike typical endogenous and exogenous fluorophores. These unique features of our nanosensors can allow us with a method to dynamically probe the tumor microenvironment in real-time and in-vivo. Patients currently have to wait until there are measurable size changes on CT or MRI scans or must undergo biopsies of the tumor to determine molecular changes in response to treatment. Having access to that molecularinformation within the first few days of treatment will be a tremendous step forward indetermining whether cancer treatments are working for each patient at a much earlier timeframe than the current standard of care. This allows for the patient and physician to morepromptly manage the treatment of their cancer.”

Investigating Effects of Proteasome Inhibitor on Multiple Myeloma Cells Using Confocal Raman Microscopy
Publication

Investigating Effects of Proteasome Inhibitor on Multiple Myeloma Cells Using Confocal Raman Microscopy

Due to its label-free and non-destructive nature, applications of Raman spectroscopic imaging in monitoring therapeutic responses at the cellular level are growing. We have recently developed a high-speed confocal Raman microscopy system to image living biological specimens with high spatial resolution and sensitivity. In the present study, we have applied this system to monitor the effects of Bortezomib, a proteasome inhibitor drug, on multiple myeloma cells. Cluster imaging followed by spectral profiling suggest major differences in the nuclear and cytoplasmic contents of cells due to drug treatment that can be monitored with Raman spectroscopy. Spectra were also acquired from group of cells and feasibility of discrimination among treated and untreated cells using principal component analysis (PCA) was accessed. Findings support the feasibility of Raman technologies as an alternate, novel method for monitoring live cell dynamics with minimal external perturbation.

Optical coherence tomography and targeted multi-modal protein microspheres for cancer imaging

The field of biomedical optics has grown quickly over the last two decades as various technological advances have helped increase the acquisition speeds and the sensitivity limits of the technology. During this time, optical coherence tomography (OCT) has been explored for a wide number of clinical applications ranging from cardiology to oncology to primary care. In this thesis, I describe the design and construction of an intraoperative clinical OCT system that can be used to image and classify breast cancer tumor margins as normal, close, or positive. I also demonstrate that normal lymph nodes can be distinguished from reactive or metastatic lymph nodes by looking at the difference in scattering intensity between the cortex and the capsule of the node. Despite the advances of OCT in the detection and diagnosis of breast cancer, this technology is still limited by its field of view and can only provide structural information about the tissue. Structural OCT would benefit from added contrast via sub-cellular or biochemical components via the use of contrast agents and functional OCT modalities. As with most other optical imaging techniques, there is a trade off between the imaging field of view and the high-resolution microscopic imaging. In this thesis, I demonstrate for the first time that MM-OCT can be used as a complimentary technique to wide field imaging modalities, such as magnetic resonance imaging (MRI) or fluorescence imaging, using targeted multi-modal protein microspheres. By using a single contrast agent to bridge the wide field and microscopic imaging modalities, a wide field imaging technique can be used to initially localize the contrast agent at the site of interest to guide the location of the MM-OCT imaging to provide a microscopic view. In addition to multi-modal contrast, the microspheres were functionalized with RGD peptides that can target various cancer cell lines. The cancer cells readily endocytosed bound protein microspheres, revealing the possibility that these protein microspheres could also be used as therapeutic agents. These investigations furthered the utility of the OCT technology for cancer imaging and diagnosis.

Physician-scientist with extensive experience developing and translating nanotechnologies and biomedical optical technologies from the bench to clinic in areas of genetics, oncology, and cardiovascular diseases. Extensive experience in community building in healthcare innovation, research, medical, and physician-scientist communities through various leadership roles.

Research Profiles

Contact