Freddy T. Nguyen, MD, PhD

Research Fellow @ Massachusetts Institute of Technology

Physician-scientist developing biophotonics and nano technologies for functional precision medicine to provide the right treatment to the right patient at the right time.

Targeted multi-modal protein microspheres for cancer imaging

Freddy T. Nguyen, Renu John, Eric J. Chaney, Kenneth S. Suslick, Stephen A. Boppart. Cancer Research 2011-04-01. Full Text
Optical coherence tomography (OCT) is a novel technology that has been developed for various clinical applications from ophthalmology to oncology. OCT is analogous to ultrasound but with micron-scale resolution by using light waves instead of sound waves to provide detailed structural information at the cellular level. The development of contrast agents has been critical to the development of OCT and its functional modalities such as magneto-motive OCT (MM-OCT). MM-OCT is a modality of OCT in which a small external magnetic field is modulated on and off during imaging, providing an added dimension of contrast from the magnetic particle responses. Protein microspheres consisting of a hydrophobic oil core and a hydrophilic BSA protein shell provide the vehicle for a multi-modal contrast agent. The microspheres encapsulate iron oxide nanoparticles in the oil core, providing magnetic signal contrast, and dyes such as Nile Red and DiR iodide, providing fluorescence contrast. The outer surface is functionalized using a layer-by-layer adhesion process to attach RGD peptide sequences to target integrin receptors. Using dynamic light scattering, we found the size distribution of the microspheres to be between 1-5 µm. Under SEM and TEM, we were able to visualize the various layers and coatings, such as silica and RGD peptides, of the microsphere. The microspheres were optimized to maximize the magnetic contrast under MM-OCT and MRI, and the fluorescent contrast under a dark box fluorescence imaging system, and fluorescence microscopy. These studies validated the use of MM-OCT as a method for quantifying the relative amount of iron oxide and the relative number of microspheres in the samples. To address the binding specificity and sensitivity of the RGD coated microspheres to the integrin receptors, the microspheres were incubated with cell lines of varying expression levels of the alpha(v)beta(3) integrin receptor and visualized under fluorescence microscopy. The cell lines used in this study included a normal epithelial cell line: hTERT-HME1, and several human breast cancer cell lines: HCC38, SK-BR-3, MCF-7, ZR-75-1, MDA-MB-231, and MDA-MB-435S. These results were externally validated by quantification of the receptors using indirect immunohistochemical staining and flow cytometry. Preliminary results, using the multi-spectral dark box fluorescence imaging system, demonstrate the localization of the microspheres to the vasculature surrounding the tumor and to lymph nodes. This is highly suggestive of the microsphere's selective binding to the vasculature. By combining the benefits of these various imaging modalities in a single agent, it becomes possible to use a wide-field imaging method such as MRI or small animal fluorescence imaging to initially locate the agents in-vivo, to use MM-OCT to provide micron scale resolution structural images in-vivo, and to use fluorescence microcopy to confirm the localization of these particles ex-vivo.

Related News and Publications