Freddy T. Nguyen, MD, PhD

Research Fellow @ Massachusetts Institute of Technology, Transfusion Medicine Fellow @ Dartmouth-Hitchcock Medical Center

Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer

Freddy T. Nguyen, Adam M. Zysk, Eric J. Chaney, Steven G. Adie, Jan G. Kotynek, Uretz J. Oliphant, Frank J. Bellafiore, Kendrith M. Rowland, Patricia A. Johnson, Stephen A. Boppart. IEEE Engineering Medicine Biology Magazine 2010-03-18

Full Text
During breast-conserving surgeries, axillary lymph nodes draining from the primary tumor site are removed for disease staging. Although a high number of lymph nodes are often resected during sentinel and lymph-node dissections, only a relatively small percentage of nodes are found to be metastatic, a fact that must be weighed against potential complications such as lymphedema. Without a real-time in vivo or in situ intraoperative imaging tool to provide a microscopic assessment of the nodes, postoperative paraffin section histopathological analysis currently remains the gold standard in assessing the status of lymph nodes. This paper investigates the use of optical coherence tomography (OCT), a high-resolution real-time microscopic optical-imaging technique, for the intraoperative ex vivo imaging and assessment of axillary lymph nodes. Normal (13), reactive (1), and metastatic (3) lymph nodes from 17 human patients with breast cancer were imaged intraoperatively with OCT. These preliminary clinical studies have identified scattering changes in the cortex, relative to the capsule, which can be used to differentiate normal from reactive and metastatic nodes. These optical scattering changes are correlated with inflammatory and immunological changes observed in the follicles and germinal centers. These results suggest that intraoperative OCT has the potential to assess the real-time node status in situ, without having to physically resect and histologically process specimens to visualize microscopic features.
Facebook
Twitter
LinkedIn
Pinterest
Email

Related Posts

Physician-scientist with extensive experience developing and translating nanotechnologies and biomedical optical technologies from the bench to clinic in areas of genetics, oncology, and cardiovascular diseases. Extensive experience in community building in healthcare innovation, research, medical, and physician-scientist communities through various leadership roles.

Research Profiles

Contact