Intraoperative Evaluation of Breast Tumor Margins with OCT

Deletion of the S1P2 Sphingosine 1-Phosphate Receptor Gene Leads to DLBCL

Tumor Stem Cells from the Pten-Null Prostate Model
Intraoperative Evaluation of Breast Tumor Margins with Optical Coherence Tomography

Freddy T. Nguyen,1,3,4 Adam M. Zysk,2,4 Eric J. Chaney,4 Jan G. Kotynek,5,7 Uretz J. Oliphant,5,7 Frank J. Bellafiore,5,7 Kendrith M. Rowland,5,7 Patricia A. Johnson,5,7 and Stephen A. Boppart2,3,4,5,6,7

Abstract

As breast cancer screening rates increase, smaller and more numerous lesions are being identified earlier, leading to more breast-conserving surgical procedures. Achieving a clean surgical margin represents a technical challenge with important clinical implications. Optical coherence tomography (OCT) is introduced as an intraoperative high-resolution imaging technique that assesses surgical breast tumor margins by providing real-time microscopic images up to 2 mm beneath the tissue surface. In a study of 37 patients split between training and study groups, OCT images covering 1 cm² regions were acquired from surgical margins of lumpectomy specimens, registered with ink, and correlated with corresponding histologic sections. A 17-patient training set used to establish standard imaging protocols and OCT evaluation criteria showed that areas of higher scattering tissue with a heterogeneous pattern were indicative of tumor cells and tumor tissue in contrast to lower scattering adipocytes found in normal breast tissue. The remaining 20 patients were enrolled into the feasibility study. Of these lumpectomy specimens, 11 were identified with a positive or close surgical margin and 9 were identified with a negative margin under OCT. Based on histologic findings, 9 true positives, 9 true negatives, 2 false positives, and 0 false negatives were found, yielding a sensitivity of 100% and specificity of 82%. These results show the potential of OCT as a real-time method for intraoperative margin assessment in breast-conserving surgeries. [Cancer Res 2009;69(22):8790–6]

Introduction

Breast cancer. Improved breast cancer screening has resulted in smaller lesions being detected earlier. An estimated 192,370 new cases of invasive breast cancer (26% of newly diagnosed cancer cases in women), 62,280 new cases of ductal carcinoma in situ, and 40,610 breast cancer deaths will be reported in the United States during 2009, making it the most widely diagnosed cancer and the second leading cause of cancer deaths among women (1). Increased 5-year survival rates have been attributed to increased awareness, earlier detection, and improved treatment and management. A large portion of patients undergo surgical removal of lesions via breast-conserving surgery (lumpectomy) with irradiation often accompanied by sentinel or axillary lymph node dissection for disease staging.

Tumor margin assessment and local recurrence. As lumpectomy rates have increased over time, the definition of a clean margin has changed. A recent study reported 45.9% of radiation oncologists defined negative margins as no cancer cells at inked margins, whereas 7.4% defined it as no cells within 1 mm and 21.8% believed it to be no cells within 2 mm (2). As more studies correlated the width of uninvolved margins to local recurrence (3, 4), a more aggressive approach toward breast conservation has allowed surgeons to use 2 mm, or even 1 mm, to define a clean margin. The same survey of radiation oncologists reported that 31% of respondents defined a close margin as having no cells within 1 mm and an additional 38% defined it to be no cells within 2 mm of the inked surface (2).

Despite this ongoing debate, the key predictor of local recurrence is the margin status (5–6). A positive margin, the presence of disease on the inked surface, occurs in at least 30% to 35% of cases, and an additional 10% to 15% are classified as close margins (<2 mm; ref. 15). Local recurrence rates for breast-conserving therapy followed by radiation were reported in 2% to 28% of cases with positive margins, 2% to 16% with close margins (<2 mm), and 2% to 8% with negative margins (15), which would be higher in the absence of radiation therapy (6, 8, 17, 18).

Intraoperative margin assessment. Currently, no real-time, nondestructive intraoperative method exists to rapidly assess the microscopic status of lumpectomy margins as standard of care (19, 20). Several techniques have been investigated including frozen section analysis, touch prep cytology, radiography, radiofrequency spectroscopy, and Raman spectroscopy. Frozen section analysis was reported to have a sensitivity of 73.08% and a specificity of 98.32% compared with paraffin section analysis in breast cancer (19). Frozen section analysis has not widely been accepted as part of standard of care due to difficulties in performing frozen sections on adipose tissue, added time (~20–30 min), increased operating room time, and additional pathology evaluation with increased costs. The most significant disadvantage is the inability for frozen section analysis to be done over the entire surface area of the tissue specimen, sharing the same sampling rate limitation as paraffin section analysis in sampling only 10% to 15% of the surface area (21).

Touch prep cytology can rapidly assess the entire surface area, addressing the sampling rate issue, while preserving the integrity of the specimen, and making it a promising technique for identifying positive margins. This technique reported a sensitivity of 75% and a specificity of 82.8% (21). The major disadvantages include the requirement for tumor cells to be at the surface, and
their detachment. Touch prep cytology does not provide information about the presence of cancer cells beneath the surface and therefore is unable to determine close and negative margins.

Intraoperative radiography of specimens provides surgeons the ability to visualize the margin in-depth by displaying two-dimensional X-ray projections. However, the low reported sensitivity and specificity of 49% and 73%, respectively (22), are primarily due to the inability to identify diffuse microscopic processes, especially where the tumor boundary is poorly defined (23).

Radiofrequency spectroscopy provides a bulk measurement over a circular area (diameter = 0.7 cm) and within a 100 μm depth (24). With low sensitivity (71%) and specificity (68%; ref. 24), shallow penetration depth, and low resolution, detection within 1 to 2 mm for margin classification is limited.

Raman spectroscopy, which extracts chemical information, was reported to have a sensitivity of 100%, a specificity of 100%, and overall accuracy of 93% in identifying carcinomas (25). Despite high sensitivity and specificity, this technique may have limited clinical utility due to point measurements with long 1 s acquisition times per point, making it unable to quickly sample large surface areas with high spatial resolution.

Optical coherence tomography (OCT) is a high-resolution microscopic optical imaging technique that yields real-time multidimensional images of subsurface tissue structure (26–32). OCT is the optical analogue to ultrasound imaging but uses light waves instead of sound waves to create images. Near-infrared light enables micron-scale resolution, providing images on the same resolution scale as histopathology. The penetration depth in breast tissue is ~1 to 2 mm, making OCT a suitable technology for intraoperative tumor margin assessment. The density of cells and subcellular scatterers (nuclei and organelles) primarily determines the depth to which the OCT light penetrates tissue and scatters back to be detected. Tissue composed primarily of adipocytes can be imaged to depths of 2 mm compared with 200 to 1,000 μm in cell-dense tumor tissue. These depths are comparable with the currently accepted margin widths that classify positive, close, and negative margins. By enabling surgeons to rapidly visualize tissue morphology beneath the surface and over large surface areas while preserving tissue structure, OCT has the potential to become an invaluable intraoperative tool for assessing margin status.

Since its introduction, OCT has capitalized on advances in telecommunications, resulting in significant increases in data acquisition speeds (33), added functional modalities (34–36), and new contrast agents (37, 38). OCT has found clinical applications in ophthalmology, cardiology, gastroenterology, and oncology (39). OCT has been used to image tumor margins in a N-methyl-N-nitrosourea carcinogen-induced rat mammary tumor model, differentiating between highly scattering cancer cells and the fibrous/fatty tissue associated with normal mammary tissue (29, 40). Increased scattering in tumor is attributed to the increase in nuclear-to-cytoplasm ratio and the increase in cellular and nuclear density (41, 42). The large size and low scattering of adipocytes, relative to higher scattering stromal and tumor cells, provides one method for differentiating these tissue types (29, 40, 43).

Access to deep breast lesions can be done using needle-based OCT probes (43–45). These needle probes can provide real-time information for guided lesion biopsy or for placement of localization wires (44, 45). Reports identified diagnostically significant information within the optical backscattering and refractive index signals that can distinguish various breast tissue types (29, 40, 46). These same diagnostic properties can be extracted from individual axial scans that comprise an OCT image or from spatial information provided by the OCT image itself (40, 45, 46). This study focuses on the first intraoperative OCT assessment of exposed tumor margins.

Materials and Methods

Instrument. A clinical spectral-domain OCT system (Figs. 1 and 2) was constructed to assess surgical margins from lumpectomy specimens. The OCT system employs a superluminescent diode (model SLD11C; B&W Tek), with an optical spectrum centered at 1,310 nm and a bandwidth of 92 nm. Light is passed through an optical circulator (CIRC-3-31-P-BB-10-6:3port; Gould Fiber Optics) and into a 95/5 fiber-optic splitter (Gould Fiber Optics) that divides the light into a sample and reference arm. A 60 mm focal length achromatic lens in the sample arm focuses 4.75 mW light to a 35 μm spot (transverse resolution). The broad bandwidth source yields an axial resolution of 5.9 μm in tissue. The depth of field of the lens (1.47 mm) closely matches the penetration depth of OCT in human breast tissue. Reflected light from the sample and reference arms is passed through polarization controllers (FPC-2; Fiber Control), coupled into an interferometer, spectrally dispersed by a diffraction grating (53004BK01-148R; Richardson Gratings, Newport; 1,000 grooves/mm and blazed for 1,310 nm), and focused onto a 6-mm gallium arsenide line camera (SU1024LE-1.7T1-148R; Sensors Unlimited) with a 150 μm single lens. With camera exposure times ranging from 24.4 to 408.4 μs, corresponding measured signal-tonoise ratios ranged from 96 to 116 dB. The imaging system acquires OCT images at a rate of ~5,000 axial scans/s or up to ~8 to 9 images/s (~600 axial scans/10 mm). The sample is laterally scanned under the OCT beam using an automated translation stage. Data are collected using a high-speed data acquisition card with a 5 MHz sampling rate and 12-bit quantizer.
...stained, and correlated.

In 1.0 cm area. The researchers involved in image acquisition varied between imaging sessions and no information about the specimen was disclosed by the surgeon or staff during the sessions. Regions selected for OCT were based on suspicious visual or palpable findings as determined by the researchers or were the entry-exit sites of localization guide wires. Following OCT imaging, one imaging site per specimen was marked with ink for correlation to OCT images. H&E-stained histology sections were acquired from marked areas imaged in the operating room with OCT. All tissue sections were stained with H&E and some were additionally immunohistochemically stained. Histology slides were digitized using a light microscope at 4× magnification and stitched together (Adobe Photoshop) to produce a single image. The compiled montage was oriented based on inked borders for later correlation to OCT images. H&E-stained histology images were classified by a board-certified pathologist as invasive carcinoma, in situ carcinoma, other abnormal tissue, or normal tissue. Margins identified as carcinoma or other abnormal tissues were considered to be positive. The pathologist was blinded to the OCT images and results, giving an independent and unbiased assessment of the histology slide corresponding to the matching OCT image set.

Results

Patient demographics. A total of 37 female patients were enrolled in the study. The training set consisted of 17 patients with a mean age of 62 years (range, 44-82) and the study set consisted of 20 patients with a mean age of 66 years (range, 41-84). Their final diagnoses, based on pathologic findings and tumor margin assessments, included 15 cases of ductal carcinoma in situ, 1 case of lobular carcinoma in situ, 2 cases of infiltrating ductal carcinoma, 9 cases of invasive ductal carcinoma, 1 case of invasive papillary carcinoma, 2 cases of invasive mammary carcinoma, and 1 case of atypical ductal hyperplasia. The majority had more than one diagnosis classification associated with their histopathologic assessment. An additional 2 patients in the training set and 2 patients in the study set were consented but subsequently excluded from the study and OCT imaging due to changes in surgery schedules or procedures.

Training data set. An initial training data set of 78 OCT images from 17 patients (minimum = 2, maximum = 10, average = 5...
images/specimen) were used to establish standard imaging protocols, coregistration procedures, and image evaluation criteria of the surgical margins. Representative images shown in Fig. 3 include normal adipose tissue (Fig. 3A), surgical artifacts of surface blood (Fig. 3B) and cauterized tissue (Fig. 3C), areas that appear duct-like in shape (Fig. 3D), and areas of highly scattering cells with spatially heterogeneous scattering intensity (Fig. 3D). These results were confirmed by gross visual findings or by histopathologic analysis. Histopathologic analysis reported ductal carcinoma in situ involvement for the specimen imaged in Fig. 3D. The training data set findings were used to establish the evaluation methodology and image feature criteria for identifying positive margins. These criteria included the presence or absence of high-intensity scatterers, the location of these scatterers throughout the tissue, the heterogeneous/homogeneous spatial distribution of scattering intensity, and the morphologic characteristics of these regions of interest. Surgical artifacts that could interfere with OCT evaluation such as surface blood and cauterized tissue appear as contiguous and highly scattering areas, remain localized to the immediate surface, and were quickly identified visually in the imaging field. In Fig. 3B, a thin film (<100 μm) of homogeneous scatterers is representative of a bloody surface, whereas, in Fig. 3C, the cauterized tissue produced a highly scattering area, which was observed within ~300 μm of the tissue surface. The region of interest in Fig. 3D has both a high scattering intensity and a more heterogeneous composition indicative of cancerous tissue. In Fig. 3D, the presence of highly scattering regions deep in the margin, instead of localized to the immediate surface, increases the likelihood that these features are intrinsic to the tissue architecture rather than a result of the surgical procedure.

Study data set. OCT images with histologic correlations from an additional 20 patients were used for the study set. A total of 210 OCT images were acquired from 20 lumpectomy specimens with an average of 10 OCT images per specimen. Using criteria established from the training set, the study set was evaluated and specimen margins were classified as positive or negative. A margin was considered positive if there was evidence of tumor cells or tissue either at the immediate surface or within the imaging depth of OCT (1-2 mm). Eleven margins were identified as positive and 9 as negative under OCT image analysis. Analysis of corresponding H&E-stained histologic sections yielded 9 true positives, 9 true negatives, 2 false positives, and 0 false negatives, giving a sensitivity of 100% and specificity of 82% (Table 1). Overall accuracy of OCT was 90% with a positive predictive value and a negative predictive value of 82% and 100%, respectively.

Three representative cases from the study set are presented in Figs. 4 and 5. The first patient (female, age 66 years) was diagnosed with ductal carcinoma in situ via ultrasound-guided core-needle biopsy with a 3.0 cm primary tumor. This case (Fig. 4) shows OCT assessment of a negative tumor margin, which consists primarily of large lipid-filled adipocytes with interweaving microvasculature. The small dark highly scattering point-like regions in the OCT image correspond to individual nuclei of adipocytes. Histologic evaluation indicated that tumor cells were located >3 mm from the surface, confirming the OCT findings of a negative margin.

A second patient (female, age 60 years), diagnosed with invasive papillary carcinoma via ultrasound-guided core-needle biopsy, had a 0.8 cm primary tumor removed by lumpectomy. A third patient (female, age 51 years) was diagnosed with poorly differentiated infiltrating ductal carcinoma and high-grade ductal carcinoma in situ.

<table>
<thead>
<tr>
<th>Histology (positive)</th>
<th>Histology (negative)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCT (positive)</td>
<td>9 (true positive)</td>
<td>2 (false positive)</td>
</tr>
<tr>
<td>OCT (negative)</td>
<td>0 (false negative)</td>
<td>9 (true negative)</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

Sensitivity = 100% Specificity = 82%
with a 2.3 cm primary tumor. Intraoperative OCT imaging of the margins (Fig. 5) revealed suspicious regions with increased and heterogeneous scattering within 1 mm of the inked surface (Fig. 5A, patient 2, 60 F) and within 0.5 to 1.25 mm of the surface (Fig. 5C, patient 3, 51 F). The matching H&E-stained histology sections for the OCT images shown in Fig. 5A and C are provided in Fig. 5B and D, respectively, confirming the diagnostic features observed. These areas contained small and highly scattering cells contributing to the increased contrast when compared with adjacent adipocytes. The increased scattering is from strong reflections from tightly packed cells, which provides the contrast observed in OCT. These results show distinct structural features identified with real-time intraoperative OCT on unstained tissue specimens that can be used to identify positive and negative margins without compromising the structural integrity of the specimens.

Discussion

This study presents the first intraoperative demonstration of OCT as a real-time, high-resolution imaging technique for the microscopic assessment of breast tumor margins. By providing subsurface imaging capabilities 1 to 2 mm deep with micron-scale resolution, OCT provides surgeons the ability to assess margin status in real-time, complementing current gross visual examination, potentially reducing the number of positive/close margins discovered postoperatively, and thereby reducing the need for additional surgical procedures. In the current standard-of-care, pathologists perform microscopic margin assessment within the 2 mm range of the surface using frozen section analysis or paraffin section analysis to determine the need for additional tissue removal.

OCT identified areas of homogeneous adipocytes, suspicious regions with highly scattering and tightly packed cells, and heterogeneous scattering patterns as some of the key features used to classify margins as negative or positive as verified by histopathology. The large relative cell size difference easily separates the identification of adipocytes from tumor cells and stromal tissue. Increased nuclear density and changes in chromatin texture are believed to be responsible for high levels of scattering observed from cancer cells (41, 42). At later tumor stages, observed characteristics change from open to filled ducts and lobules and to heterogeneous tumor masses. Focal...
regions of scatterers embedded in adipose tissue were identified under OCT indicative of smaller clusters of tumor cells. With more advanced cancer, areas of highly scattering tissue with irregular and heterogeneous patterns were identified. With an increased sampling rate of tumor margins with OCT, we expect to identify an increased number of positive surgical margins not otherwise grossly identifiable and likely missed due to limited sampling during standard histopathologic analysis.

Surgical artifacts such as cauterized tissue and superficial blood are identified in OCT images as a contiguous layer of dark scatterers. These artifacts appear homogeneous in nature and are limited to the cut surface of the surgical margin rather than extending deep into the tissue. A relatively large pool of blood or cauterized tissue can limit the penetration depth of OCT due to high scattering. The imaging penetration depth with a bloody surface (Fig. 3B) is slightly diminished, compared with a cauterized surface (Fig. 3C), where penetration depth drops off sharply with little to no features observed beyond the cauterized tissue. Intravascular blood in small vessels and capillaries makes up a relatively small percentage of the tissue volume and has a minimal effect on the OCT penetration depth. In cases with residual surface blood, saline has been used to rapidly irrigate the surface to regain OCT imaging depth. OCT has been shown for in vivo intravascular applications in humans, where an OCT imaging catheter is fully immersed in blood and imaging is done following a saline flush (48). These surgical artifacts can be differentiated from intrinsic tissue properties and can be quickly addressed without interfering with the ability of OCT to assess the margin. The presence of dyes such as methylene blue or lymphazurin, which are used to map lymph drainage for sentinel and axillary lymph node dissections, absorb in the spectral region below 700 nm (data not shown). Therefore, the presence of these dyes does not affect OCT imaging because our system operates in the spectral region around 1300 nm.

Recent advances in OCT technology have increased data acquisition speeds to ≥200,000 axial scans/s (33). This would permit acquisition of 400 frames/s for a scan range of 10 mm and a lateral resolution of 35 μm. For a 1 cm² area, imaging would be achieved in a few seconds while maintaining the full lateral resolution in both x and y directions. Novel computational algorithms such as interferometric synthetic aperture microscopy are being implemented for real-time OCT imaging, yielding spatially invariant lateral resolution equivalent to that achieved at the focus of the beam (49). These combined advances offer the potential to vastly increase data acquisition rates and resolution without sacrificing the large scan area and real-time capabilities of OCT. The significant increase in data volume and limited time to analyze and interpret image sets will increase the need for automated classification algorithms (40, 44).

The differentiation of malignant (carcinoma) from benign (fibroadenoma) tumors is an ongoing research effort, as with many other biomedical imaging techniques. Stromal tissue, which makes up a larger percentage of breast tissue in younger patients, is primarily composed of connective tissue and favorably is generally less scattering compared with tumor tissue (30). Studies have shown that the optical refractive index does not differ greatly between stromal and tumor tissue (46). Preliminary results from our laboratory have identified a promising combined method for distinguishing between the two tissue types by examining the power attenuation in the signal, the periodicity of the scattering profile, and the extracted refractive index information to aid in automated classification of OCT signals (40, 45, 46). Differentiation between benign fibrocystic changes versus malignant lesions will be important in further clinical studies. Cysts are expected to be readily distinguished due to their relatively large size, thin membranes, and low amount of scatterers within the cyst. Early morphologic changes such as ductal hyperplasia or dysplasia, with increased cell density and nuclear-to-cytoplasmic ratio, are likely to exhibit increased scattering, and ongoing work to improve resolution and to extract distinct image features may be necessary to distinguish these early changes.

This report shows the potential of real-time intraoperative OCT for margin assessment from resected breast lumpectomy specimens. OCT acquires images in the same physical range as that used in histology to classify surgical margins as positive, close (<2 mm), or negative. The development of faster scanning handheld probes will allow surgeons to quickly scan the in situ tumor cavity wall in addition to the lumpectomy specimen margin, providing guidance on tissue removal. In situ OCT imaging would effectively double the sampling depth by evaluating depths up to 2 mm on the specimen and on the cavity wall. Further studies with even higher resolution, comprehensive volumetric imaging, and automated tissue-type classification are expected to reveal additional unique features that can be used to further improve the identification of positive and negative margins intraoperatively with OCT. Intraoperative identification of positive margins will decrease the need for additional surgical procedures and the rate of local recurrence in breast cancer patients.

Disclosure of Potential Conflicts of Interest

S.A. Boppart is cofounder of Diagnostic Photonics, Inc., a company developing Interferometric Synthetic Aperture Microscopy for intraoperative imaging. He also receives royalties from patents related to optical coherence tomography, licensed from the Massachusetts Institute of Technology. The other authors disclosed no potential conflicts of interest.

Acknowledgments

Received 11/30/08; revised 9/11/09; accepted 9/16/09; published online 11/12/09.

Grant support: NIH grant R01 EB00522, University of Illinois at Urbana-Champaign and University of Illinois at Chicago Inter Campus Research Initiative in Biotechnology, Grainger Foundation, and Carle Foundation Hospital (S.A. Boppart) and U.S. Department of Defense grant BC073292 (F.T. Nguyen).

Additional information can be found at http://biophotonics.illinois.edu.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

We thank Ann Benefiel, Mary Collins, Barbara Hall, and the research support staff and administration at Carle Foundation Hospital and Carle Clinic Association for their assistance in coordinating the clinical aspects of this study. We also thank Dr. Daniel L. Marks for technical discussions and contributions toward this project.

References

5. Aziz D, Rawlinson E, Narod SA, et al. The role of reexcision for positive margins in optimizing local disease
Optical Coherence Tomography Identifies Surgical Margins for Breast Cancer Intraoperatively

- Imaging rates provide more comprehensive assessment of margin status.
- Real-time, high-resolution OCT may reduce re-operation rates.

PHILADELPHIA – Intraoperative optical coherence tomography (OCT) rapidly images larger breast tumor margin areas, dramatically improving the microscopic sampling rate or analysis of the margin.

“Intraoperative OCT has the potential to provide diagnostically useful information about margin status in real time, at the point of care, rather than relying on postoperative histopathology,” said Stephen Boppart, M.D., Ph.D., professor of electrical and computer engineering, bioengineering and medicine, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign.

Results of this study will appear in an article and on the cover of the Nov. 15 issue of Cancer Research, a journal of the American Association for Cancer Research.

OCT is a high-resolution imaging technique that offers optical biopsies of tissue, therefore yielding images that approach the resolution of histopathology.

Boppart and colleagues demonstrated the feasibility of using this technology for evaluating surgical margins during breast-conserving lumpectomy procedures. The aim was to first establish image-based features that could be used to determine negative or positive margins, and then demonstrate how well intraoperative OCT compares to histopathological findings of the tissue.

Thirty-seven patients were divided into two groups — 17 in a training set and 20 in a study set. Of the lumpectomy specimens in the study set, 11 had a positive or close surgical margin; nine had a negative margin under OCT.

In the study set, intraoperative OCT had 100 percent sensitivity and 82 percent specificity for determining margin status using postoperative histopathology as the gold standard, according to Boppart. OCT, with imaging resolution around 10 microns and depth-of-imaging up to 2 mm...
into the tissue, identified cell and tissue features to differentiate negative margins from positive margins.

“The imaging depth was equivalent to the tissue depth that pathologists typically examine postoperatively to determine if the margin is negative, close or positive,” he said. “Image features could also be used to identify structures such as surface blood or cauterized tissue and distinguish these image artifacts from normal and tumor tissue.”

Follow-up studies are ongoing in an effort to develop computer-aided detection algorithms that would automatically identify suspicious areas within images, according to Boppart. New computed imaging techniques are also being developed to improve the imaging resolution over larger volumes of tissue, which should further improve the ability to distinguish tumor cells.

“OCT is a very promising technology with many advantages for real-time optical biopsies of tissue. We hope that this technology and methodology will shift the microscopic assessment of tissue from postoperative assessment in the pathology lab, which offers limited sampling of the margin, to real-time, point-of-care assessment in the operating room, with improved comprehensive sampling of the surgical margin,” Boppart said.

He believes this will ultimately result in fewer repeat surgeries and long-term, potentially lower local recurrence rates.

The mission of the American Association for Cancer Research is to prevent and cure cancer. Founded in 1907, the AACR is the world’s oldest and largest professional organization dedicated to advancing cancer research. The membership includes 30,000 basic, translational and clinical researchers; health care professionals; and cancer survivors and advocates in the United States and nearly 90 other countries. The AACR marshals the full spectrum of expertise from the cancer community to accelerate progress in the prevention, diagnosis and treatment of cancer through high-quality scientific and educational programs. It funds innovative, meritorious research grants, research fellowship and career development awards. The AACR Annual Meeting attracts more than 16,000 participants who share the latest discoveries and developments in the field. Special conferences throughout the year present novel data across a wide variety of topics in cancer research, treatment and patient care. The AACR publishes six major peer-reviewed journals: *Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; Cancer Epidemiology, Biomarkers & Prevention; and Cancer Prevention Research*. The AACR also publishes *CR*, a magazine for cancer survivors and their families, patient advocates, physicians and scientists. *CR* provides a forum for sharing essential, evidence-based information and perspectives on progress in cancer research, survivorship and advocacy.
OCT System Proves Value as Intraoperative Breast Cancer Imaging Tool

Front page blurb: Beckman Institute researcher Stephen Boppart has been developing an optical imaging system for assessing tissue that will provide real-time diagnostic capabilities in the operating room. After many years of technology development, laboratory testing, and clinical studies, the system has now shown its potential as a tool in the fight against breast cancer.

Pull-out quote(s): It’s very rewarding because this is where we wanted to be all along. But we also recognize this is just a start. We’ve got a lot more work to do and a lot more questions to ask. – Stephen Boppart

OCT System Proves Value as Intraoperative Breast Cancer Imaging Tool

By Steve McGaughey, Beckman Institute Writer

It has been more than six years since Beckman Institute researcher Stephen Boppart first began imaging tissue samples using an optical method he had been developing for breast cancer diagnosis. The first paper http://cancerres.aacrjournals.org/cgi/content/short/69/22/8790 reporting on a clinical study of the validity of Boppart’s method is the cover story in the Nov. 15 issue of the American Association of Cancer Research’s journal *Cancer Research*.

The paper http://cancerres.aacrjournals.org/cgi/content/short/69/22/8790, titled *Intraoperative Evaluation of Breast Tumor Margins with Optical Coherence Tomography*, appears as the cover story http://cancerres.aacrjournals.org/content/vol69/issue22/cover.shtml online in the journal and the print edition and reports that the system has in fact proven accurate and viable as an operating room diagnostic tool for the important mission of assessing tumor margins in breast cancer surgery.

“It’s been one of the longer investigations that we’ve done because these are clinical studies,” Boppart said. “It’s very rewarding because this is where we wanted to be all along. But we also recognize this is just a start. We’ve got a lot more work to do and a lot more questions to ask.”

Boppart is senior and corresponding author of the paper, while lead author is Freddy Nguyen of Boppart’s research group. Other co-authors include Boppart research group members as well as medical personnel at Carle Foundation Hospital, where the clinical studies were conducted.

This first clinical study involved using, for the first time anywhere, an optical coherence tomography (OCT) imaging system as an intraoperative (within the operating room during the procedure), real-time diagnostic tool for assessing tumor margins in breast tissue. The paper reports that, when correlated with post-surgical findings of pathologists, the accuracy of the OCT system’s results were validated by the histology data.

The authors report that the intraoperative OCT system showed 100 percent sensitivity and 82 percent specificity for determining margin status, either positive or negative, for cancerous cells. Boppart said that a positive margin means there are tumor cells at a cut surface, a close margin means they are within one millimeter of that surface, and a negative margin that they are greater than one millimeter away.
“The fact that we have 100 percent sensitivity means we were able to detect 100 percent of the time when disease is present, when there is a positive margin,” Boppart said. “The 82 percent specificity means when there is a negative margin, we are able to call it negative 82 percent of the time. So I’m very pleased with those numbers.”

The ongoing project has had more than 75 participants to date, with 37 patients involved in this study, including 17 in a patient training set and 20 patients – all of whom had a biopsy-proven breast tumor – for the study of the intraoperative procedure.

The advantages of the OCT system, as the authors write, are that it “provides surgeons the ability to assess margin status in real-time, complementing current gross visual examination, potentially reducing the number of positive/close margins discovered post-operatively, and thereby reducing the need for additional surgical procedures.”

Boppart, who is also an M.D., Co-chair of Beckman’s Integrative Imaging research theme, and professor in the departments of Electrical and Computer Engineering, Bioengineering, and Medicine, at Illinois, said the ability to quickly and accurately assess tumor margins in the operating room is an important capability the OCT system brings to the fight against breast cancer.

“I don’t think it will ever replace histology as the gold standard,” Boppart said. “Histology, with its resolution and staining, is really what is used to make the final diagnosis. However, histology has limits in terms of how much it can sample, how long it takes, and how much it costs.”

Boppart said that histology assessments performed after surgical lumpectomy procedures find positive margins between 10 percent and 30 percent of the time. He said that with histological methods, tumor margins are often under-sampled, sometimes missing positive margins, and often with a return to the operating room for a second resection procedure for the patient.

“And this is found a day later after the surgery has ended,” Boppart said. “It means that the patient has to come back for another procedure, with all the risks and costs associated with that, and all the anxiety.

“Another downside for the patient is if there are any tumor cells left behind. These patients are likely to relapse, as there is a fairly high local recurrence rate of tumors that grow back in that area.”

The authors write that, by using the OCT system, “intraoperative identification of positive margins will decrease the need for additional surgical procedures and the rate of local recurrence in breast cancer patients.”

Boppart sees the future of the OCT system as one where surgeons use a device to guide them during the procedure.

“We’re not quite there yet but the technology is such that we could acquire this data in real time,” he said. “The idea would be to have a wand or hand-held probe you pass over the margin and basically sample a much, much greater percentage of that margin than histology ever does.”

Boppart started working with OCT technology in 1993, and began to acquire breast tissue samples for imaging their optical properties in 2003. In 2005 protocols were approved to take a portable system into operating rooms at Carle and start looking at tissue in order to show the type of images that could be used by a surgeon.
Since it is an experimental technique, the surgeons are not currently using the OCT information to dictate surgical procedures. But the initial results are exactly what Boppart was hoping for when he began this research line several years ago.

Boppart said the project has had more than 20 people working on it, including his co-authors, oncologists, surgeons, pathologists, and nurses. In addition to Boppart and Nguyen, co-authors of the paper include Adam Zysk and Eric Chaney of his group, and breast surgeons Jan Kotynek and Uretz Oliphant and medical oncologists Kendrith Rowland and Patricia Johnson of Carle.

“There are many logistics with recruiting patients, and working with a whole new set of investigators to get the clinical data and correlate it with our image data,” he said. “In addition to myself, a team of students and researchers at Illinois, and other physicians, there is the support staff at Carle, the research coordinators, nurses who help with getting patient’s consent, surgical staff, pathologists, and technicians who all help to make these studies possible.”

The cover image accompanying the article was rendered by Nguyen, postdoctoral researcher Steven Adie, Boppart, and Darren Stevenson, manager of Beckman’s Visualization Laboratory.